This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Supply chain practitioners seeking the best way to speed decision intelligence, unify supply chain data, and increase operational efficiency can benefit from a supply chain data gateway. Here are 10 ways a supply chain data gateway can improve your performance across the end-to-end supply chain.
As customers increasingly demand rapid and reliable delivery, optimizing this final leg of transportation becomes essential for businesses aiming to enhance customer satisfaction and operational efficiency. Data-driven approaches, such as predictive analytics, facilitate real-time adjustments in delivery operations.
Many global multinationals accelerated their investments in digitizing data during the pandemic. According to Colin Masson, a director of research at ARC Advisory Group, the opportunity to mine these vast quantities of data to achieve business value is “NOW.” Mr. Masson leads ARC’s research on industrial AI and data fabrics.
Supply chain practitioners seeking the best way to speed decision intelligence, unify supply chain data, and increase operational efficiency can benefit from a supply chain data gateway. Here are 10 ways a supply chain data gateway can improve your performance across the end-to-end supply chain.
Data is a big buzzword across industries, but how about when it comes to logistics? William shares how they transform data into critical actionable information that optimizes and powers operations throughout businesses. Beyond The Data with William Sandoval. Our topic is beyond the data with my friend William Sandoval.
In response, many organizations have shifted toward decentralized and regionalized supply chain models, distributing production and sourcing across multiple regions. The prevailing strategy was to produce goods in low-cost countries and distribute them globally, optimizing for economies of scale.
Predictive analytics, fueled by vast datasets including historical sales, market trends, and weather patterns, enables businesses to optimize inventory levels with precision, reducing overstock or shortages and ensuring customer satisfaction through accurate demand forecasting. AI’s role in sustainability is particularly noteworthy.
As businesses strive to stand out, leveraging data effectively has become a game-changer. One of the most powerful yet underutilized tools for achieving this is decile data analytics. What Is Decile Data? The resulting data makes it easier to make smart data driven decisions on individuals that make up service target markets.
How are companies leveraging scenario modeling for network design and optimization ? The good news is many of the survey’s respondents recognize the potential of more advanced optimization solutions. In the context of disruptions like COVID-19, scenario modeling can make considerable difference – Tweet this.
For example, signs that a company is moving in the right direction, talent-wise, might include: The deployment of staff in new roles, absent the traditional supply-chain-centric titles and instead, hybridizing across data-science and logistics skill sets.
Lets break it down with some examples that hit home: Supplier Diversification : Reflecting on the disruptions caused by the pandemic, companies heavily reliant on Chinese suppliers faced significant challenges. An automotive company I collaborated with conducted detailed modeling of potential tariff impacts on semiconductor supply chains.
Through the story of a plant manager, it offers insights on how to improve efficiency, which also includes optimizing the production process as a whole, instead of focusing on individual parts. In our picking example, you would begin by analyzing the entire warehouse to identify where the bottleneck or constraint occurs.
Before a potential customer buys an autonomous mobile robot solution, Locus Robotics often uses different types of simulation to determine the type of robots needed and the number needed to optimize productivity at a warehouse. DES allows the modeling of complex warehouse operations at various levels of detail.
The food and beverage industry is a dynamic, ever-evolving sector in which manufacturers are continuously seeking ways to optimize production and reduce costs in the face of shifting consumer demand and preferences. Optimizing production is essential to addressing these challenges. For example, review the systems scalability.
Designed to integrate seamlessly with enterprise resource planning (ERP) systems through APIs and batch processes, the TMS facilitates smooth data flow and operational efficiency. These tools enhance transportation management by improving forecasting, optimizing logistics processes, and providing greater supply chain visibility.
What Celanese has accomplished is the single best example ARC is aware of employing agentic AI and copilots at scale. Further, when they began thinking about a platform to detect and react to equipment anomalies, they realized those capabilities would support safety, better product quality, and production optimization.
During COVID, this more agile and resilient model allowed the firm to grow their market share. An iGPU (integrated graphic processing unit) is a current example. As an example, if we have congested lanes, the system will automatically flag that we have a potential risk of delay based. Factories serve local markets.
Optimization is a ubiquitous term in the supply chain and logistics industry. We all talk about how we need to optimize our operations. In practice, however, relatively few companies are using optimization technology, particularly in transportation. Why is transportation optimization key today? Types of optimization.
Optimize Inventory Management Inventory often represents one of the largest expenses in a supply chain. Solution: Use data-driven forecasting to predict demand as accurately as possible. Example: Retail giant Zara uses real-time data from its stores to adjust inventory dynamically.
Today, the steel manufacturing leader has an ambitious digital transformation agenda and is leveraging AIMMS technology to optimize operations in its home country. I belong to this second division and work mostly on mathematical modeling, simulation and supply chain analytics. . I work for the analytics department within Tata Steel.
In this post, we’re revisiting the topic with a more holistic approach, focusing on six factors that can make the difference between an optimal and suboptimal distribution network design. It would be folly not to take advantage of data availability and accessibility.
In this article, we will delve into strategic ways for warehouse managers to eliminate waste, with a focus on not only optimizing the use of cartons and packing, but labor resources and warehouse space as well. One effective method to optimize packing is the standardization of carton sizes. Product slotting is a complex problem.
This year, a recurring theme that I saw was about using supply chain data to improve the customer experience across the entire value chain. Here are the ones that stood out to me, especially as it relates to supply chain data. The single data cloud runs on Snowflake, one of Blue Yonder’s partners.
The first product of this partnership is TacticalOps, a Planning & Optimization solution for Food Manufacturers. I spoke with Luis Pinto, Partner at UniSoma, to understand the need for new planning and optimization solutions in the global food supply chain. I’ve seen the attitude towards optimization evolving yes.
Data is a crucial component of digital transformation in the manufacturing sector. However, data in itself is not a value driver. Many manufacturers aren’t maximizing the value from enriching data and missing out on opportunities to grow, optimize or manage risk. Create new revenue models.
The onus is on ecommerce retailers to control the controllables, and focusing on eliminating uncertainty from the consumer fulfillment process and optimizing the last mile is a smart approach. By mapping customer delivery personas to the delivery choices they offer, retailers can improve fulfillment certainty to protect margins.
By leveraging these technologies, businesses can optimize operations, reduce costs, and make smarter, data-driven decisions. The Future of Matrix-Based Optimization The Future of Matrix-Based Optimization AI and machine learning (ML) take matrix-based analysis to new heights.
Increasing supply chain data visibility is a priority for logistics organizations looking to improve resilience. Supply chain recovery hinges on incorporating robust data analytics and other data-driven tools into business operations to increase efficiency, reduce costs and proactively manage risk.
Meeting today’s logistics challenges of the three C’s – customer service, carbon, and cost – companies are not just looking at gathering data, but also how to better interpret and understand this data, and then use it to drive additional value. Analyze and track your carbon footprint using logistics data.
Inventory Control Techniques that use Stock Optimization Best Practices. So we thought we’d focus on the lesser known topic of ‘stock optimization’ – this is an inventory control technique that’s becoming more popular with inventory managers to improve the efficiency of their supply chain. What is stock optimization?
Machine learning is a process by which learning algorithms are applied to large sets of data to create predictive models. First, DCs are a controlled environment for collecting and aggregating historical and real-time data – and data is a key to effective AI. AI-Based Warehouse OptimizationExamples.
In a prior post , I wrote about the various ways data is transforming global supply chains. Data is the raw fuel of digital transformation and the linchpin to accelerating industry collaboration, automation, predictive insights and so many more cutting-edge capabilities (including those yet to be invented). So, what is quality data?
Data for data’s sake lacks value, especially in the view of the supply chain. And across the market, submitted data becomes rapidly outdated. And in some industries, outdated data can have disastrous consequences. For instance, take the value added by more accurate data in the health industry.
Optimize automation/robotics alongside human workers. As a DC planning tool, machine learning represents an alternative to traditional engineering and process modeling. For example, the traditional approach to workforce planning is to use an engineered labor standards system. Engineered Standards vs. Machine Learning.
By embracing collaboration, real-time data, and a focus on sustainability, companies can build resilience, improve margins, and gain a competitive edge. Top Challenges Faced by Companies: Customer Preferences: Example: An online fashion retailer faces the challenge of constantly changing customer preferences.
Before we look at the barriers to optimal inventory and the possible ways to eliminate or overcome them, let’s be clear on what inventory optimisation means—because misconceptions do abound. For example, you can optimise for cost, profit, or service, but not for all of them. Service as a Barrier to Optimal Inventory.
The RISE with SAP offering includes an AI-powered cloud ERP that’s managed and optimized by SAP. When SAP refers to AI, it refers to generative AI based on large language models or AI based on machine learning. I might tell Alexa, for example, “Play the station Smooth Jazz!” This is a public Cloud solution.
If you have been through this process at least once, you already have a good idea of what supply chain design is about: optimization. When most people hear the word “optimization,” they immediately think about minimizing costs. But optimization is much more than that! First comes the data and how well we understand it.
Essential Steps to Using Warehouse Modeling Software for Design 1) Understand the Design Objectives and Constraints The first step in your review should be to determine and prioritise the objectives for your warehouse facility and operation. For example, is an SKU typically ordered by the pallet, carton, split carton, or individual unit?
Further, while artificial intelligence helps solve certain types of problems, Jay Muelhoefer – the chief marketing officer at Kinaxis pointed out – optimization and heuristics work better for other types of planning problems. Artificial intelligence is beginning to be used to update the data.
Many companies are achieving this transformation by adopting modular, elastic DC technologies – including AI and robotics – that provide continuous warehouse optimization without replacing their current monolithic and static warehouse systems. Those systems and processes were designed to serve the current business model for 10 years or more.
Optimization and simulation are the two main branches of SCND. Optimization accounts for over 90% of all work that is being done by SCND teams. This article describes how to incorporate simulation techniques into optimization, build a stochastic optimizationmodel, and end up with a more resilient supply chain model.
Companies “seeking to increase data sharing and collaboration across their supply networks have faced three principal hurdles.” Those include trust issues, the operating model, and technology. The LevaData solution, for example, speeds up sourcing significantly. The remainder of this article will focus on the technology issues.
Machine learning (ML) techniques can be applied to provide more accurate transit information and estimated arrival times (ETAs) by analyzing the historical shipment data in your transportation management systems. The model learns continuously and can adapt to changing conditions in the network.
We organize all of the trending information in your field so you don't have to. Join 84,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content